Carbon-Storing Materials

Summary Report

February 2021

Carbon
Leadership
Forum



CARBON-STORING MATERIALS E:;zz:]ship

SUMMARY REPORT Forum

About the Carbon Leadership Forum
Inspiring and spurring collective action to solve the embodied carbon challenge

The Carbon Leadership Forum is a non-profit industry-academic collaborative at the University of
Washington. We are architects, engineers, contractors, material suppliers, building owners, and
policymakers who work collaboratively, pioneering research, creating resources, and incubating
member-led initiatives for greatest collective impact. Our goal is to accelerate transformation of the
building sector to radically reduce and ultimately eliminate the embodied carbon in building
materials and construction.
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Executive Summary

The Carbon Leadership Forum at the University of Washington has recently completed a four-month
research project with a major US tech company to understand the potential of using low-carbon and
carbon-storing materials in new construction. The project focused on carbon-intensive hotspot materials
(e.g., concrete foundations and slab floors, insulated roof and wall panels, and structural framing) in light
industrial buildings. The study found that a sizable reduction (~60%) in embodied carbon is possible in two
to three years by bringing readily-available low-carbon materials into wider use. Furthermore, this work
predicts that fostering a carbon-storing material supply system by investing in the development and
manufacturing of nascent carbon-storing materials industries will make a carbon-positive future possible
in three to five years (see Figure 1).

%
Why is this strategy important? The International
Panel on Climate Change (IPCC) has established that

reductions in carbon emissions alone are not enough to
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next 30 years, embodied carbon, namely emissions
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associated with the procurement, manufacturing, Carbon Emindng o

construction use, and disposal of building materials, is Carbﬂn'stﬂring
predicted to account for almost 50% of all new

construction-related carbon emissions

(Architecture2030). Addressing these emissions now is

critical since embodied carbon emissions are

committed at a building’s inception and remain Figure 1. Potential carbon reductions (credit:
constant throughout the life of a building. Wil Srubar).

A key strategy. We can convert buildings from being an existential climate threat (emissions source) to a
significant climate solution (emissions sink) by using biogenic materials that store carbon and reduce
emissions during the production of construction materials. Emissions sinks are crucial to achieving
decarbonization by 2030 because carbon has a time value; the impact of photosynthetic drawdown exerts
the most impact at the beginning of the building process (see Figure 2).

Another key strategy can be found in the use of rapidly renewable biogenic carbon-storing building
materials produced from biomass (e.g., annually harvested agricultural residues and purpose-grown
fibers). Indeed, the use of biogenic materials renders possible not only upfront photosynthetic drawdown
but also the potential for long-term carbon positivity. Both are crucial to achieving decarbonization by

1 The IPCC: “limiting warming to 1.5 degrees C will require removing carbon from the atmosphere in addition to reducing

emissions”
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2030 because achieving upfront photosynthetic drawdown in the early stages of the building process
exerts the greatest impact on emissions and climate.
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Figure 2. Photosynthetic drawdown (credit: Chris Magwood).

What are the broader impacts? It is possible to catalyze building decarbonization by establishing a new
socio-techno-economic model that promotes building with biomass. Biogenic building materials made
from biomass - underutilized agricultural residues (e.g., rice hulls, wheat straw, and bamboo leaf ash,
sunflower stalks, sugar bagasse) and purpose-grown fibers (e.g., bamboo, cork, hemp, algae, and seaweed)
- have the potential to create new building products (Cantor & Manea, 2015; Liuzzi, S., 2017; Maraveas, C.,
2020). Building with these biogenic materials also has the promise to catalyze new manufacturing hubs,
create jobs, provide training and education opportunities, and reduce the need for traditional, emissions-
intensive disposal methods of waste fibers (e.g., incinerating, landfilling, composting). In addition, the
carbon avoided and carbon stored in buildings represents a new asset class of carbon products for
emerging carbon marketplaces. Taken together, these strategies are estimated to contribute to significant
(> 1 gigatons of CO, per year) reductions of total carbon emissions globally (Churkina, G., et al. 2020;
Habert, G., et al. 2020; Frank, S., et al, 2018). This work proposes that, by pairing communities where
biogenic materials are harvested with companies (industry partners) where manufacturing and
construction services occur, we can reduce upfront emissions in the building industry. We can also cut
emissions associated with underutilized agricultural residues while catalyzing new carbon and building
product markets and strong economies, producing multiple co-benefits.
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1 Introduction

1.1 Context

Globally, the building and construction sectors account for nearly 40% of global energy-related carbon
dioxide emissions through the construction and operation of buildings (including the impacts of upstream
power generation).? Current building codes address operating energy but typically overlook the impacts
“embodied” in building materials and construction products. In fact, when aggregated across industry
sectors, more than half of all GHG emissions relate to materials management (including material extraction
and manufacturing).® As building operations become more efficient, managing the embodied impacts
related to producing and installing building materials becomes increasingly significant.

Meaningful embodied carbon reductions can be achieved using materials on the market today. Carbon-
storing materials, both bio-based (such as mass timber) and mineral-based (e.g., emerging concrete
products and concrete utilizing carbon capture and storage (CCS) technology), demonstrate the feasibility
of using building materials to store carbon. Indeed, if the amount of carbon stored in a building exceeds
the amount emitted during materials extraction, the building can be considered a “carbon sink” (Churkina
et al., 2020). Though many carbon-storing materials are available on the market today, others are still in
early development and deployment stages and require testing in order to gain market acceptance and
scale in use.

Our research project focused on a light industrial building. This typology provides a unique testing ground
forinnovations in carbon-storing materials due to the unique performance requirements, high operating
energy demands, and 15-year projected lifespan of these types of buildings. Given the industry’s
continuing plans to develop, build, and operate light industrial campuses, we believe our research
guestion carries broad implications and merit:

What is required to exceed carbon neutrality targets by storing enough carbon in building

materials for the building to become a net carbon sink?

By exploring both immediate and emerging strategies for embodied carbon reduction and storage, we
tested our research question and developed a methodology and low-carbon and carbon-storing materials
roadmap with potential for a broad impact.

2 UNEP and IEA, “Global Status Report 2017: Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction
Sector,” 2017.

3 OECD, “Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences” (Paris, 2019),
https://doi.org/https://doi.org/10.1787/9789264307452-en.
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1.2 Project vision: Designing for carbon-storing materials systems

The Carbon Leadership Forum (CLF) was hired as a consultant in January of 2020 by a US technology
company to identify opportunities for material substitutions to promote the decarbonization of their light
industrial buildings in their new technology center building projects.

These technology centers, by virtue of their sheer size, rapid proliferation, and high use of resources,
possess a unique ability to impact global, national, regional, and community building scales and
manufacturing hubs. As such, the work of this project utilizes a “systems-of-system” (SoS) approach, based
on our understanding that researchers, industry professionals, businesses, markets, and supply chains are
components of numerous complex, integrated systems situated globally, regionally, and in local
communities (see Section 1.5 for more SoS information). The measure of success for this carbon-storing
project was our collective ability to help inform and guide decisions and actions in the design and building
of these campuses, potentially inspiring thousands of individuals and companies in the industry to follow
suit by reducing embodied carbon emissions in the most powerful and impactful ways.

Using an SoS approach to the design, construction, and operation, a technology center campus can serve
as the nexus of a community of buildings, strategic innovation, and more. It can also weave a socio-techno-
economic fabric that enables carbon reductions while catalyzing new regional manufacturing industries to
join in the construction of a connected community of buildings beyond the technology center campus.
Furthermore, increased use of new carbon-storing materials may encourage the development of new tools,
databases and banking methodologies industry-wide.

1.3 Projectvalues

Serving as imperatives for the project, the following values guided the project’s SoS approach:

e Lead by example. Set new and disruptive business-as-usual standards for a business impact with
a global reach in embodied carbon in campus design.

e Influence materials production. Support manufacturing practices to foster industry adoption.

e Take a holistic approach. Design and build entire material supply systems, identifying mutual co-
benefits in the local community, environment, and economy.

e Be future-ready. Consider the use of technologies and infrastructures responsive to the call for
innovation and scalable solutions designed for an as-yet unknown technology future.

1.4 Project goals and recommendations

From this set of four underpinning values, the team created an index of low-carbon and carbon-storing
materials to consider, vet, and evaluate. The materials index examined a range of products as a basis from
which to evaluate opportunities and challenges for use in building design. This materials index (see Section
7) was honed over the course of the project into specific goals for recommendations in the following three
time frames:
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e Immediate 1-to-1 substitutions (one-year time frame). These recommendations are intended to
provide embodied carbon reductions via material substitutions widely available, fulfilling the intent
of the current building design without the need for a redesign.

e Near-future use (two- to three-year timeframe). These recommendations are intended to
provide significant embodied carbon reductions via biogenic material substitutions and
mineralized carbon products available on the market and may require component redesign
without altering the basic geometry or form of the current light industrial building design.

e Carbon-positive future (three- to five-year timeframe). These recommendations include
biogenic and mineralized material substitutions that are not yet widely available. Some of these
materials would work with the current building design and require only component redesign, but
others would require an overall redesign of the building. Included in the carbon-positive future are
materials currently in small-scale production as well as those in various stages of research and
development. These developmental opportunities are termed “quantum-leap” opportunities
because they disrupt business-as-usual design practices. The carbon-positive future options
present opportunities to progress beyond embodied carbon reductions at the material level
toward the project goals as described in the system-of-systems approach outlined below.

1.5 System-of-systems approach

The CLF’s mission to inspire and spur collective action to solve the embodied carbon challenge comprises
an important piece of the climate change puzzle that can be expanded through system-of-systems (SoS)
thinking. When we consider the broader impacts of systems at multiple scales (e.g., community-wide,
regionally, globally), an SoS mindset envisions our built and natural systems as composed of interwoven
threads creating a fabric crucial to healthy systems for our planet, communities, and building industries.
When we pull on various threads, an SoS approach reveals how low-carbon and carbon-storing materials,
manufacturing, building, human, and natural environments are connected. The intersections of these
threads offer spark points for innovative strategies.

For this study, the team envisioned the future technology campus as a “Hub” that will catalyze new
regional product manufacturing industries to contribute to the construction of a connected community of
buildings both within and beyond the boundaries of day-to-day technology operations.

Taking an incremental and sequential approach, the team first sought to map materials for immediate
one-to-one replacement of carbon-intensive materials common across all regions and applicable to core
technology center facilities globally. Next, the team identified opportunities to incorporate appropriate
regional materials for replacement of existing materials with new carbon-storing materials according to
local socio-techno-economic conditions of a selected region of North America. Then, recognizing that a
technology campus project can affect socio-techno-economic conditions via investment in regional low-
carbon and carbon-storage material manufacturing hubs, we sought to identify potential impacts on
mature, emergent, and non-existent markets. For example, partnering with local agricultural businesses to
include “agricultural residue” products in the manufacturing of materials like hempcrete could incorporate
regionally appropriate fibers found in tobacco, sunflower, or rice plants into building materials.
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Finally, the team sought to enhance opportunities for connecting low-carbon and carbon-storing materials
research, design, manufacturing, and construction practices to local communities for housing, education,
and employment.* Opportunities for connected communities include (see Figure 3):

e Design for biophilia. Enhance sustainable communities for humans and non-humans through
design (e.g., grow low-carbon materials on site, foster distribution of carbon-storing materials).

e Regenerative design. Use of district renewable energy, energy storage, water collection, and
renewable materials (e.g., use energy and water to support adjacent communities).

e Design for circularity. Ensure potential for modularity and reuse through prefabrication of
components and building assemblies and reuse.

e Beyond the boundaries of the campus. Enhance technology, education, jobs, and housing in
support of the local economy and workforce training.

A System-of-Systems Approach: Toward Building Decarbonization

Quantum Leap

Near-Future
Tomorrow

Regional Materials Hubs for Materials Connected Communities
Identify "tailored" Manufacturing : enhance

" " ecosystems for humans and
replacement of Affect non-human through building design

existing materials SOCiO-technO-GGOI"IO (e_g_' grow materials, distributed
with new carbon mic conditions via carbon storing materi%IS)

. . . . . consider
storlng materials |nvestme.nt in oo e e
according to local regional storage and water collection and
socio-techno-econo carbon-storage treatment
mic conditions material : ensure

. potential for modularity, reuse, and
manufacturing hubs prefabrication

Global Materials
one-to-one
replacement of carbon
intensive materials
common across all
regions with broad
applicability

OUTCOME: Enhance technology,
education, jobs & housing

Figure 3. A system-of-systems approach: Toward Building Decarbonization (credit: Julie Kriegh).

“ See Section 4 for further information on these opportunities
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2 Whole building life cycle assessment

2.1 WBLCA overview

A whole building life cycle assessment (WBLCA) of an existing light industrial building was conducted in
order to establish a benchmark for a prototypical building. This single-story building is an approximately
287,602 square-foot facility. It is a steel-framed, pre-engineered metal building (PEMB) with a

concrete foundation. This analysis was performed in 2020 by WSP Engineering using Tally, an LCA tool that
is integrated with Revit (a building information modeling (BIM) software). Operational energy was not
assessed.

The building scope of the WBLCA included:

e Structural elements, such as beams, columns, and slabs
e Enclosure elements, such as walls, roofs, finishes, waterproofing
e Interior walls

The building scope excluded:

e Elements or material systems that made up less than 5% of the total mass of the building
Mechanical, electrical, and plumbing (MEP) systems
Miscellaneous items such as equipment; landscape elements; fire detection and alarm systems;
parking lots; site improvements; finishes on the interior floors and ceilings; railings; and non-
structural partitions.

The following life cycle stages were assessed:

e Al:Raw material supply

e A2:Transport (from raw material supply site to manufacturing site)
e A3:Manufacturing

e A4:Transport (from manufacturing site to building site)

e B2: Maintenance

e B3: Repair

e B4:Replacement

e B5: Refurbishment

e C2: Transport (from building site to waste disposal site)

e (3:Waste processing

e (C4: Disposal

e D: Benefits and loads beyond the system boundary (e.g., recycling, energy recovery)
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2.2 WBLCA results

The embodied carbon footprint of the prototypical building was calculated to be approximately 380
kgCO.,e/m2 Table 1 presents a summary of the overall WBLCA results.

Table 1. Summary of WBLCA results, reflecting life cycle stages A1-A4, B2-B5, C2-C4, and D (credit: WSP
Engineering).

Result normalized by

gross floor area
Measure Units Result (units/m?)
Global warming potential kgCO,eq 10,165,381 380
Acidification potential kgS0,eq 41,835 1.56
Eutrophication potential kgNeq 2,457 0.09
Ozone depletion potential kg CFC-11eq 0.26 9.59E-06
Smog formation potential kg0seq 595,370 22
Primary energy demand MJ 146,950,819 5497
Non-renewable energy demand MJ 135,212,453 5058
Renewable energy demand MJ 11,698,460 438
Mass total of materials kg 32,368,779 1211
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Figure 4 shows the contributions from different building categories to the overall global warming potential
(GWP) or embodied carbon impact of the building. Figure 5 shows the contributions to total GWP by
material division. This figure shows that concrete, metals, and insulation (a.k.a. “Thermal and Moisture

Protection”) make the greatest contributions to GWP.

Windows Doors
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Figure 4. Contributions to total GWP by category
(credit: WSP Engineering).
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Figure 5. Contributions to total GWP by material
division (credit: WSP Engineering).
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Figure 6 shows the contributions to overall environmental impacts by life cycle stage. This figure shows
how the Product stage made the biggest contribution to the embodied impacts of the building.

3.237E+007 1.261E+007 52,861 2,693 691,235 1.585E+008
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[ End of Life [C2-C4)

[ Medule D [D]

Figure 6. Contributions to overall environmental impacts by life cycle stage, results from Tally (credit:
WSP Engineering).

2.3 Bayslice study

A bay slice refers to one structural bay with half a structural bay on each side is open on each side. A bay
covers approximately 5000 square feet of area. A bay slice was used to model the following alternative
designs:

1. Steel baseline case
2. Steel proposed case
3. Glulam proposed case

The key materials in the different bay slice models are shown in Table 2.
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Table 2. Key materials in different bay slice models (credit: WSP Engineering).

Steel Baseline Case Steel Proposed Case Glulam Proposed Case
e Total Concrete Structure e Total Concrete Structure e Total Concrete Structure
e Total Steel Structure e Total Steel Structure e Total Steel Structure
e Total Glulam Structure
e 6" Gravel Base e 6" Gravel Base e 6" Gravel Base
e Base-of-Wall Cladding e MetlSpan C42 Wall e Benson Wood Wall Panel
e MetlSpan C42 Wall e MetlSpan CFR42 Roof e Benson Wood Roof Panel
e MetlSpan CFR42 Roof e |soSpan ® |soSpan
e Louver +Bird Screen e Louver +Bird Screen e Louver +Bird Screen
e XPSRigid Insulation, e XPSRigid Insulation - Footing e  XPS Rigid Insulation - Footing
excluding XPS at Base-of- Only Only
Wall Cladding

The results from the bay slice study are shown in Table 3. The assessment was conducted by WSP
Engineering in Tally and assumed a service life of 60 years for the building. Biogenic carbon was included
in the results for modules A1-A4, B, C, and D (the treatment of biogenic carbon was taken on a 100-year

timeline in alignment with GWP 100 standard). In this case it is assumed that the life of the building is less
than 100 years and the full disposal and degradation cycle will occur. Results are reported with and
without the benefits and loads of biogenic carbon. Results show that using glulam in place of steel can

reduce the embodied carbon by at least 60% compared to the baseline case (see Table 3).5

5 WBLCA assessment and Bay Slice study were conducted by WSP Engineering in Tally and reported in a June 10,2020 m

emo.
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Table 3. Summary results from bay slice study, reflecting life cycle stages A1-A4, B2-B5, C2-C4, and D
(credit: WSP Engineering).

Absolute GWP reduction

from steel baseline case % GWP
Case GWP (kgC0O2eq) (kgCO2eq) reduction
Steel Baseline 484,404.80 - -
Steel Proposed with biogenic carbon 433,691.92 50,712.88 10.47%
Steel Proposed without biogenic carbon 434,243.11 50,161.69 10.36%
Glulam Proposed with biogenic carbon 142,284.93 342,119.87 70.63%
Glulam Proposed without biogenic carbon 167,670.02 266,021.90 65.39%

2.4 Discussion

Building components that had the potential to be replaced with low-carbon and carbon-storing
alternatives were identified and organized in three implementation time horizons: 1-to-1 replacements
(implementable within one year), near-future replacements (2-3 years), and innovative strategies enabling
a carbon-positive future (3-5 years). Potential reductions in embodied carbon increase dramatically at
each time horizon, with a net neutral or even carbon-storing balance achievable within a five-year time
frame:

e 1-to-1replacements - 20% reductions achievable immediately
e Near-future replacements - 60% reductions achievable within 2-3 years
e Carbon-positive approach > 100% reductions achievable within 3-5 years

The recommended carbon-storing materials and strategies fall into five distinct categories, addressing the
current design’s embodied carbon hotspots:

e Concrete. Minimization of concrete elements and improvements to concrete specifications are the
single most important factors to achieve emission reductions in the immediate term. Sizable
reductions are possible in the near term as developments in concrete formulation progress, with
opportunities for leadership in adoption. Carbon-sequestering aggregate and biogenic
cementitious materials offer the potential to reduce the carbon footprint of concrete to zero within
five years.

e Structural framing. The embodied carbon of the current steel frame of the building design can be
reduced by conscientious steel procurement (e.g., electric arc furnace steel or direct reuse). A
switch to a glulam timber frame offers significant emission reductions and, with appropriate
sourcing of the timber, could lend substantial carbon storage to the building.
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Building enclosure. The current metal-insulated panels (MIPs) with foam insulated cores can be
improved only minimally by procurement decisions. However, a switch to wood-framed panels
with cellulose insulation with appropriate detailing for fire protection achieves major reductions
and carries the potential for a high amount of carbon storage. Panels currently available on the
market with cellulose insulation offer suitable replacements for current MIPs in the near term.
Wood-framed panels could be optimized within five years to be entirely carbon-storing, made from
certified wood or bamboo and natural fiber insulation that is regionally-sourced, based on the
panels currently being produced in limited quantities.

Louvers and bird screens. Aluminum fabrications are currently used in the design, with limited
opportunities for emission reduction via responsible sourcing. Bio-composite materials using
agricultural fibers and bio-resins offer potential replacements within 3-5 years, a shift that would
enable this portion of the building to achieve zero emissions or net carbon storage.
Purpose-grown fibers, earth, and waste. Throughout the building, many opportunities can be
found to use building materials based on regionally appropriate natural fibers, soils, and waste
streams, including sheet goods, flooring, cladding, millwork, interior panels, and finishes. All of
these choices would contribute to increased carbon storage capacity.

3 Findings and recommendations

3.1 1-to-lreplacements

Materials research demonstrated that simple material substitution made to general specifications and low-
carbon material procurement strategies can yield a 20% reduction in embodied carbon compared to the
baseline WBLCA (see Table 3).

Key recommendations for short-term (immediate) implementation are as follows:

Concrete foundations (footings and slabs). Minimize the use of concrete. Edit master
specifications to specify design compressive strength of concrete @ 56 (or 90) days; remove limits
of 30% maximum SCM content and specify 40% minimum SCM content where appropriate; specify
limits in cement content (verifiable with concrete mix design submittal and batch ticket) and/or
embodied carbon (verifiable with EPDs) per compressive strength category per region; and
encourage use of Type IL cements, which are now widely available.

Foundations (perimeter wall). Despite a relatively small impact on overall emissions, a move to
using biogenic insulated concrete forms (e.g., IsoSpan, Nexcem IsoSpan) would enable a
scenario in which use of more innovative concrete mixes requiring longer curing times would not
slow the construction schedule because the formwork is permanent.

Structural systems. Source all steel from electric arc furnace (EAF) facilities and/or encourage
direct reuse where appropriate.

Wall and roof panels. In the current design, wall and roof panels are constructed of metal
insulated panels (MIPs) filled with extruded polystyrene (XPS) or expanded polystyrene (EPS) foam
insulation cores. Analysis showed that no significant reduction in emissions could be
demonstrated by substituting mineral wool for the current foam-based insulation in the MIPs.
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However, manufacturers may be open to supplying cellulose insulation in lieu of extruded
polystyrene (XPS) or expanded polystyrene (EPS) foam panels as an alternate.

3.2 Near-future replacement

Even with the 20% reductions achievable today through short-term changes, building systems will remain
responsible for significant outputs of carbon. Material substitutions and low-carbon strategies
implementable in the near-future (2-3 years) provide a roadmap to transform technology campuses from
carbon-emitting building platforms to carbon sinks. For example, the near-future WBLCA does not
incorporate a CLT floor/foundation (with appropriate detailing) or bio-based louvers, but these elements
would further and significantly reduce the carbon footprint of the building (see Table 3).

Key recommendations for near-future (2-3-year implementation) are as follows:

e Concrete foundations (footings and slabs). Edit master specifications to mandate Type IL and/or
LC3 cements; explore potential partnerships with alternative cement/concrete and carbon-storing
aggregate and filler manufacturers; work with concrete suppliers to prompt their transition to
natural, more sustainable SCMs; engage a CLT manufacturer/design firm for conceptual design
and analysis of CLT foundations in place of concrete.

e Structural systems. Redesign the steel structural system to accommodate a glue-laminated
(glulam) engineered wood structural system with appropriate fireproofing considerations.

e Wall and roof panels. Engage a manufacturer of wood-frame/cellulose wall and roof panels (e.g.,
prefabricated panels) to establish appropriate design parameters and finishing options; work with
panel manufacturer to source sustainably harvested wood products for panels; work with design
team and panel manufacturer to ensure panels are easily dismountable at the end of the building’s
lifespan; encourage panel manufacturer to produce an EPD for the panels.

e Louvers. Connect with a biofiber and bioresin fabricator to design an appropriate louver and bird
screen system to replace the current aluminum version; encourage the fabricator to produce an
EPD for the product to quantify emission reductions and storage potential.

3.3 Carbon-positive future

These strategies can reduce emissions by at least 60% (see Table 3), and potentially more, depending on
the accounting for biogenic carbon.

Key strategies for a carbon-positive future (3-5 year implementation) are as follows:

e Fiber-based materials. In general, agricultural biofibers are regionally available and highly
abundant. Biological fibers such as hemp, straw, and other agricultural residues, as well as
seaweed, could be used as building blocks for strong, durable building materials. Proof-of-concept
and small-scale technologies already exist to transform biofibers into building materials. These
technologies can be scaled and replicated in other regions around the world.

e Earth-based materials. Similar to biofibers, earth-based materials abound, as does the
knowledge and practical know-how to build strong, durable, insulative, fire-resistant earth
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structures. Opportunities exist for (1) introducing compressed earth block technologies in regions
where they do not yet exist and (2) combining earth blocks with biofiber reinforcements, panels, or
insulation materials to create high-performance carbon-storing envelope assemblies.
Purpose-grown materials. The power and potential of rapid photosynthesis and the unique
abilities of photosynthetic organisms can be harnessed in the manufacturing and “growth” of
carbon-storing materials. Algae, for example, can be used to create biofuels and biochar as well as
a multitude of other functional bioproducts, such as inks, foods, carbon-storing mineral fillers for
concrete, and other load-bearing carbon-storing building materials and finishes. Algae (and
photosynthesis more broadly) could thus serve as a nexus for a carbon-storing community.

Waste stream materials. Measures can be taken to prevent waste-stream biogenic materials from
returning carbon to the atmosphere. Municipal recycling systems and regional industrial by-
products can often furnish raw materials for a wide variety of building materials. Such materials
are in production in many places today and could be encouraged near technology centers.
Partnerships in research and development with companies exploring new recycled materials can
be fostered.

4 Discussion and future directions

4.1 Paradigm shift toward a carbon-positive future

A transition to a carbon-positive future can be facilitated by a paradigm shift in perspectives of technology
campuses as the center of carbon-storing communities. A pivot of this type will necessitate design
changes that go beyond emission reductions and promote carbon-storing materials and strategies that
contribute even further to meeting carbon-neutral goals by 2030. Asincreasing numbers of companies
pivot to support global strategies exemplified by existing and emergent regional industries worldwide, a
paradigm shift from carbon emission reductions to carbon-storage strategies will follow, meeting both the
values and goals stated below:

Lead by example. Set new and disruptive business-as-usual standards for an impact that has
global reach with regard to carbon storage in design and construction practices, both on
technology center campuses and in local communities and industries.

Influence materials production. Support manufacturing practices to foster industry adoption
with a focus on globally strategic plans to promote the production of new region-specific biogenic
materials (e.g., fiber and purposefully-grown materials).

Take a holistic approach. Foster carbon-storing communities that includes mutual co-benefits for
the local people, environment, and economy. This model essentially focuses on the importance of
photosynthetic (carbon) drawdown and fostering community-based co-benefits for the new
biogenic materials industries. Existing examples include: energy-flexible buildings tied to a smart
grid, district heating and cooling relationships with a local community, transit-oriented and
development linking transportation to housing, economic opportunity zones pairing agriculture
residue products with materials manufacturing, and education and workforce training
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partnerships with local universities. This report suggests that a technology center could comprise
the hub for carbon-storing communities.

o Be future-ready. Be a leader in the future carbon economy and a pioneer in the eco-ag-tech
industry. Design for prefabrication, modularity, circularity, and reuse will enable future flexibility.

5 Limitations and future applications

Limitations. This study did not thoroughly investigate potential changes to: building codes, material
assemblies with respect to moisture, humidity and temperature, architectural design, structural
engineering, cost estimating, and construction schedules or specifications.

Future applications. We anticipate that there are several notable next steps in the development of
carbon-storing materials including:

1) Coderevisions
o ldentify code and standards barriers to adoption of new materials
o Engageinstandards and code development process to support revisions
o Support testing and certification as needed to address concerns such as fire
resistance/water
2) Pilot materials
o Engage an architectural, engineering, and construction teams to evaluate materials with
respect to cost, schedule, life safety, building codes, fire, humidity, and other performance
specifications, and product availability
o Investigate new and innovative biogenic materials in early stages of development
3) Prototype buildings
o Build small but impactful prototype, not necessarily industrial campus
o Consider demonstration projects for affordable housing and community center structures
4) Address opportunities and barriers
o Promote EPDs for materials, LCAs, policies, tools, and methodologies
o Provide corporate incentives for new materials/manufacturing and education/careers
o Develop survey instruments addressing opportunities and barriers to market adoption
including: environmental values, design, engineering, manufacturing, and construction
practices
o Evaluate opportunities to transform the avoided and stored carbon into carbon assets
that can be sold on emerging carbon marketplaces for buildings
5) Advocate for environmental justice
o Advocate for environmental justice with respect to climate impacts, materials and
manufacturing, access to economic opportunities through business development,
education, and job training
o Endorse carbon-storing materials to promote healthy outcomes for people, prosperity and
the planet
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Fiber 1 Leadby example One of “hot spots” Now. Limited d-al 100%
Future Materials | systems building 2. Influence material production i the 1-to-1 or near-tem presentations was the metal dladding | production product
millwork, flooring and finishes 3. Takea holistic approach i i types of products.
4. Befuture ready d f into their
hi supply to the panels.
Co-development: |1 Lead by example Range of products h ingto | Now. Production in Products 3.1 [No No Yes High 100% High No 1[Ves Moderate | High Maybe Admin Al
Future Materials 2 purposes. £ walls. relevant for i Naand  |[scale Europe o export their manufacturing machinery. tml
required 3. Takea holstic approach globally
4. Befuture ready
fiber | Co- 1 v exampl been dor inAsia. tobring to ng for ceiings and walls. Millwork 0 rth No No No High 100% High Maybe 1 Yes Moderate | Moderate Maybe Admin Developing
Future Materials um board 2. o scale Asia and tim. Potential for structural sheathing. Most bulk ag fibers are turned in
required 3. Takea holistic approach areas, tuning residues. i i 1 Opportuniti the Us (seelink)
4. Befuture ready for S1Ps, interior finishes, millwork, rim. production (especiall of sorghum and com) is possible




35 Carbon-positive Seaweed| Batt and Board Insulation Codevelopment: |1, Lead by example Requires design and development in a given region to bring to Danish manufacturer 100%
Future Materials 2. scale https://convert.as/
required 3. Takea holisticapproach
4. Befuture ready
35 Carbon-posttive Hempwood  Structural Milwork fnish Codevelopment: |1, Lead by example Hempwood recent startup i Kentucky 100%
Future Materials 2 https://hempwood.com/
required 3. Takea holisticapproach
4. Befuture ready
35| Carbon-positive Wheat straw MDF | Wall panels and millwork/trim Off-the-shelf 1 Leadby example but Excellent tobringto | Now. Production in th in the past. i No. Yes Yes High 100% High Maybe 1ves Low High Maybe ‘Admin Al
Future Materials altemative (11 2. Influence material production opportunity to support regional production n a variety of strawich | scale Asia. a A
replacement) 3. Takea holisticapproach regions. Potentialto be used in SIP production. Us/Canada China i e
4. Befuture ready ilding
agricultural esidue.
C 1 v exampl been done. Not aware of any product g0 |R&D Quite a bi E Doc [No Partial Yes High 100% High Maybe Tlves Moderate | Moderate Maybe ‘Admin Al
Future Materials 2 a1l corn growing regions globally. Boards can be for S1Ps, interior inihes, |scale o ument/vol7/vol?_N&/138-IMES-1811-
required 3. Takea holisticapproach millwork, tim create structural and insulation panels 2015-Amenaghawon.pdf
4. Befuture ready
35| Carbon-positive from ag waste fibers Off-the-shelf 1 v exampl ‘wide range of P | Torzo's f i tobringto | Now. High end, atractive panels and flooring made from a variety of waste | Torzo uses a variety hof No Yes No Medium 100% Low Yes 3[No Low Already exists | Maybe Admin Developed
Future Materials atemative (11 [2. residues. concentration for different crops. scale stream and ag fibers which has regional centers of production
replacement) 3. Takea holisticapproach
4. Befuture ready
Codevelopment: |1, Lead by example The hemp fiber and bio resin composite material from 100%
Future Materials | Systems 2 Margent/Cecense has the potential to eplace the louvers and
required 3. Takea holstic approach bird screens as it can be fabricated to any specification. The
4. Befuture ready remaining materials can be used as exterior dladding to replace
the metal with carbon-storing options.
35| Carbon-positive o 1 v exampl been dor in Asia. Boards tobring to Resysta inUs Resysta cladding currently 's being d No No No High 100% High Maybe Yes Moderate | Moderate Maybe ‘Admin Al
Future Materials boards 2. can be for S1Ps, interir finishes, millwork, tim. scale Asia made]. See above forrce hullregions cts/resysta/
required 3. Takea holisticapproach
4. Befuture ready
35 Carbon-posttive Resysta| Rice hull cladding Off the-shelf 1 Leadby example The only Now. Limited US & options imited. This growing Yes Uncertain 100% High No 2[ves Moderate | Moderate Yes ‘Admin Developed
Future Materials atemative (11 |2. onthe Us market. “accent" market. production could fillan important role. cts/resysta/
3. Takea product,
4. Befuture ready
c panels made o 1 v exampl production from UK. An exciing Ripe for rket. Comp Now. Limited Aven roduct br http://product margentfarm.com 100%
Future Materials resin 2. Major a b
required 3 Takea composite X
4. Befuture ready testing now.
35 Carbon-positive Rice straw MDF |Wall panels and milwork/trim Off the-shelf 1 y exampl ca P Now. Limited CalPlantLisa alfornia tice growing roduct Inhouse LCA|  Yes No High 100% High Maybe Yes Low High Maybe ‘Admin I
Future Materials atemative (11 [2. joni i in 2020, states
3. Takea interior Millwork and trim.
4. Befuture ready
Off-the-shelf 1 v exampl i trong. Long history, forinterior Now. ng for ceiings and walls Currently produced b Tectum. Yes Yes No Medium 100% Medium Yes No Low Already exists Yes Allscales Developed
Future Materials altemative (11 |2 Influence material production |well proven. Particularly g European "Herakiith” product ]
attenvation 3 Takea i herakiith. 5 armstrong. portfolo.tmi
4 pacity oni c uses.  regions of NA.
ypsum boards in many places.
15 carbon-positive Mycofoam board style. c 1 y exampl ype pa This X I replace petro- [Could be now, with | Full ASTM testing completed. Company capable of supply. Noconstraints. Production currently in NY s/ /ecovativedesian com No Yes Maybe Medium 100% High Yes Tlves Moderate | High Yes ‘Admin Developed
Future Materials density panel for millwork & fumiture 2 Id be availabl foam $1Ps and bring hg i ty a commitment to ordern
required 3. Takea setting. del. | major emitter. quantity
4. Befuture ready
TS panel 1 v exampl TS is doing interesting work ina number o areas, including ICF blocks, So0n. Start-upin TTSis Currently in Alberta, Canada http://ttsfol.com/products/ No Partial Yes Medium-High 100% High No 2[ves Moderate | Moderate Maybe Admin Al
Future Materials blocks 2. panels and sheet goods. Nothing commercially available yet, but Alberta, Canada may soon be ready forimplementation
3. Takea holisticapproach potentialfor growth.
4. Befuture ready
15 carbon-positive Off-the-shelf 1 v exampl Us Now. Production < Yes Yes No High 100% High No No Tow High Yes Allscales Developed
Future Materials structural capacity altemative (111 |2. pportunity g in2021. West mainly in Europe, timberis produced.
3. Takea ng of Limited NA production.
4. Befuture ready large buidings. to replace foam SIP panels. New facilty planned for|
Maine
15 Carbon-positive Hemp panels | Wall panels and milwork/trim Off-the-shelf 1 v exampl X Now. product. Panel ta small sca No Yes Yes High 100% High Yes 1ves Low High Yes Allscales Al
Future Materials altemative (11 2. Influence material production some . here. Mycofoam, st arth-hemp-board/
replacement) 3. Takea holisticapproach with hemp sheathing would be a major step forward.
4. Befuture ready
15 Carbon-positive < 1 y exampl Much R&D has been done, and production is occurting n Asia. Boards inUS Resysta cladding ¢s being made). No No High 100% High Maybe 1ves Moderate | Moderate Maybe ‘Admin Al
Future Materials boards 2 can be for $1Ps, interior inishes, millwork, trim. cts/resysta/
required 3. Takea holisticapproach
4. Befuture ready
15 Carbon-positive ‘Cork | Wall and roof insulation. Combined insulation & cladding | Off-the-shelf 1 Leadby example Yes Yes Now. 1Us distributors. Small Planet the i Yes Yes No High 100% Low Yes No Low Already exists Yes ‘Admin Developed
Future Materials altemative (11 2. Influence material production Tumwater, WA, walls/
replacement) 3. Takea holisticapproach
4. Befuture ready
15 Carbon-positive 1 y exampl Yes Now. Limited Creation of biochar s  leading candidate for carbon sequestration. biochar. No No Vs Uncertain 100% Uncertain No Yes Uncertain Uncertain B ‘Admin I
Future Materials . Canbe used 2 production in Us Adoption of biochar building materials would support the growth and joumnal.org/en/ct/3
aggregate. 3. Takea holistic approach development of biochar power/heat production
4. Befuture ready
15| Carbon-positive Off-the-shelf i v exampl inuus Materials in California. Now. Limited Roof decking sheets are intended for large roofing projects. Excellent inCa. Thi No Yes Maybe High 100% High No Yes Low High Yes Allscales Developed
Future Materials sheathing atemative (11 |2. They have recently d are only making [some . here. Mycofoam, st production opportunity to confirm best conventiona practice. 8
3 Takea ing i i » ReWall did a prog
4 a , and provid irdrinki d ReWall
excellent carbon storage ata low cost. made wall panels for their school.
P Earthen materials can be used throughout the bulding in 100%
Future Materials | Systems potential use of earthen materials variety of oles and these can be used independently orin o based onthe
2. Conductregional sois analysis to understand conjunction. assessment of regional sols and their suitabilty for inclusion ina particular
opportunities for earthen buiding systems data center.
Connect with regional soi scientists and earth building
artisans to form network of expertise:
4. Develop speciications for appropriate use of earthen
materials to simplify inclusion when possible
5. Investin research and development of innovation at al
levels
6. Fosterdirect connections between all nodes of the
system
35| carbon-positive o 1 v exampl calif for expansion. This could i ingto | Now. This California company is ripe for in Calffornia. Could be Inhouse LCA [Yes Yes Low-mediom High Maybe 2[¥es Low Moderate No. ‘Admin Al
Future Materials regular  leading i the use of 2. potentilly replace L butis | that has vast potential globally. scale
earth would have global reach required 3 Takea ikely nota However,
in early o 4. Befuture ready 2 good fire break wall option and/or a visible wallin the admin
and foster industry adoption portion of the building.
3) Regional manufacturing in areas with poor soi for
agriculture offers many co-benefits. Rammed earthiis
beautiful and biopt Example:
35| Carbon-positive Clay panels | Drywallreplacement made from clay Co-development: |1 Lead by example ag fibers tobringto | Now. Limited Cay rior Not carbon A i Inhouse LCA|  Yes Yes Low 100% High Yes Yes Low Low Maybe ‘Admin Al
Future Materials 2. por scale production in Europe | storing, but a very low carbon option to replace the higher emissions of stipanterre/
required 3. Takea holisticapproach impacts from gypsum board. gypsum board (drywall). https://ecobuildingboards.weebly.com
4. Befuture ready uploads/5/0/7/3/5073481/ebbx
overview 1.odf




35 Carbon-positive Earthen floors Slabs, flooring Co-development: |1 Lead by example Clayin in Oregon http://daylin.com/ 100%
Future Materials 2.
required 3. Takea holistic approach
4. Befuture ready
alls Co-development: |1 Lead by example Numerous contractors throughout North 100%
Future Materials 2 i America http://nareba.o
required 3. Takea holstic approach
4. Befuture ready
Co Co-development: |1 Lead by example Numerous suppliers and installers 100%
Future Materials 2. throughout USA
required 3. Takea holistic approach https://dwellearth.com;
4. Befuture ready
35 Carbon-positive PISE sprayed earth] Structural walls and foundations, Co-development: |1 Lead by example Numerous suppliers and installers 100%
Future Materials 2 i throughout Usa
required 3. Takea holstic approach https://semmesco.com/our:
4. Befuture ready methods/pise-rammed-earth/
35| Carbon-positive Clay-based paints| Finishes Off-the-shelf 1 Leadby example Numerous suppliers and installers 100%
Future Materials altemative (11 |2 Influence material production worldwide
replacement) 3. Takea holistic approach ttps://www.bioshieldpaint.com/index.
4. Befuture ready php?main_page=indexicPath=144&zen
id=6db917ee3a140079330148862346b
s3c
(Other Insulation Technologies
1 carb Off-the-shelf 1 Leadby example i from Armstrong. Long history, i Bto | Now. g g Currently produced by Tectum. Yes Yes No Medium 20% Medium Yes 1 No Low Already exists Yes Allscales Developed
Future Materials altemative (11 |2 Influence material production | well proven. Particularly g i European "Heraklith" product scale mmerc
3. Takea holsti Excellent wa herakith b armstrongportolio.tmi
4 pacity . Carbor uses W regions of NA.
ypsum boards in many places.
35 carbon-positive | Rice huls Loose fillinsulation Co-development. |1 Lead by example One of i i bring g Loose filinsulation for ities. ity to use a high in i i = No Yes No High 100% High No 1 Yes Moderate | Moderate Yes Admin Al
Future Materials 2. | Canbe scale ot of all a fibers for insulation California, Louisiana, Mississippi, Missouri Texas.
required 3. Takea holistic approach 't currently used for
4. Befuture ready developed, but likely possible. buiding purposes
b Off-the-shel 0 v exampl (inTexas) a crop-in it Y i gt |Now. ¥ 3 hgotenet/publicati| Mo Vesfor Yes Medum 100% Hgh No 1 Maybe Low High Maybe “Admin Al
Future Materials altemative (11 |2 i it ® Clothing industry seeking scale. of denim batts. R&D for | good opportunities for R&D partnerships Textile waste as an al UltraTouch. No
3. Takea holsti i i L parts of NA and globalh i in many other types of temative_thermal insulation building for others
4. Befuture ready R&O. textile waste material_solution
35| carbon-positive | IsoStrau Loose fillinsulation made from chopped straw Off-the-shelf 1 v exampl i Austria now. i i i bring to | Now. Productionin v i fibers in troh Yes No Yes High 100% High No 1 Yes Moderate High Yes Admin Al
Future Materials atemative (11 [2. scale Europe buildings. This could be done in NA very easly.
replacement) 3. Takea holistic approach
4. Befuture ready
35| Carbon-positive | Wool Loose filland batt insulation Off-the-shelf 1 v exampl i Wool. A drop-in Yes i gto |Now. Produced in US,NZ Requires regional wool production hitps://havelockwool.com/ No, butin Yes No High 100% Low No 3 No Low Moderate Yes ‘Admin Al
Future Materials atemative (11 2. i itute for Higher cost, but scale. process
3. Takea holsti i i ited for
4. Befuture ready admin building.
35 Bagasse U Used i d|co 1 v exampl been done. Not aware of any product i bring to | Soon. Limited daptable ith potential v ways, Sugar growing regions https://www.sciencedirect.com/science | No No No High 100% LowinUs Maybe 2 Yes Moderate | Moderate Maybe Admin Developing
pressedinto batts and boards 2. allsugar growing regions globally. Boards can be for SIPs, interior scale [article/abs/i/5092134491300058X
required 3. Takea holistic approach fnishes, millwork, trim continued R&D in Asia | panels
4. Befuture ready and Brazil
b Co-development: |1 Lead by example Yes Yes i gto | Now. Production in X 9 https://solomit com au/acoustic: Inhouse LCA |Yes Yes High 100% High Yes 3[ves Moderate | Low Yes Admin Al
Future Materials 2 i scale AustraliaandAsia | effect strawboard-ceilings/
required 3. Takea holstic approach
4. Befuture ready
Other Construction Technologies
Carbon-positive | Lichen Indoor green walls Researchand 1 Leadby example Co-nvestment in R&D i ina given region to bring High 100% Yes Yes Uncertain Uncertain Uncertain Uncertain
Future Materials 2 i scale
3. Takea holstic approach
4. Befuture ready
35| Carbon-positive | Green roof Off-the-shelf 1 Leadby example Yes Yes tobiingto | Now < runoff. Can we Hot, dry cimate ® unvival Yes 100% Yes 1|No,already e[ Low Already exists | No Allscales Al
Future Materials Live Roof in Pacific Northwest altemative (11 |2 Influence material production scale & igation? Might | unle
replacement) 3. Takea holistic approach 0
4. Befuture ready etration, this mig i resp
above serverracks
15yr] Build proof of conceptfor | Co- 1 v exampl Yes Yes Now-can be See "Systems" sheet matri for applications of S0 Yes Maybe Yes 1 Yes Moderate High Yes Allscales Al
P 2. implemented on many iy,
connect to surrounding required 3. Takea holisticapproach levels buildi
communites 4. Befuture ready i |
hub
15yr i y: d Off-the-shelf 1 Leadby example Yes Yes Now M5 is doing this now. Yes Yes Maybe Yes 1 Yes Low High Yes Allscales Al
atemative (11 |2 Influence material production
replacement) 3. Takea holistic approach
4. Befuture ready
15yr] builtoffsite orina o 1 v exampl Yes Yes Now. Regional Can red 3 Distance from factory site s @ v 3 idi Yes Yes Maybe Yes 1 Yes Low High Yes Allscales Al
components site 2. production materials systems/
required 3. Takea holisticapproach
4. Befuture ready
15y Circularity / design for < 1 v exampl Yes Yes Now. Bring i i Yes Yes Maybe Yes 1 Yes Moderate High Allscales Al
i potenti i 2. scale Many of
required 3. Takea holistic approach components for deconstruction and reuse.
4. Befuture ready
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