

A Deeper Dive into Wood Product LCA Forest Resource Accounting

CLF Wood Seminar Series May 7, 2020 by Elaine Oneil, PhD Director of Science and Sustainability, CORRIM

Well Established International Framework and Hierarchy

Scale Matters

Graphic representation of the spatial and temporal dynamics of C storage for a typical PNW forest managed on 45-year rotations presented as: the growth and harvest cycles of **one forest** stand (in turquoise), an average per ha for 10 forest stands harvested in sequential intervals (in teal), and an average for 100 stands harvested sustainably as part of a "normal" forest (in **brown)**. Adapted from McKinley et al. 2011 and Janowiak et al. 2017.

- 60 year old PNW Douglasfir ready for harvest
- This is the result of intensive forest management that happens to be SFI certified, under a spotted owl management plan, and still part of the company's active harvesting program.

Forest Growth without Management

Stand Level Carbon Sequestration Natural Regeneration vs Managed Forests

PNW Commercial Softwood Management PNW No Management/Natural Regen

Improved Forest Management aka High Intensity Forestry 70 14 year] × 12 60 Annualised yield [dry tonne hectare⁻¹ Clonal and biotech

50

40

30

20

10

[years]

age

Rotation

Tree improvement

Weed control

Site preparation

Natural stand

— Rotation age pulpwood [years]

Fertilization

Planting

Silvicultural developments over 8 decades that have led to increased pine plantation productivity, heightened C uptake and storage, and shortened time to harvest in the US SE. Adapted from Fox et al. 2004.

2000

1990

1980

1970

10

8

6

2

1950

1960

1940

Consortium for Research on Renewable Industrial Materials A non-profit corporation formed by 20 research institutions to conduct cradle to grave environmental studies of wood products

2010

SE Region Forest Carbon Stocks and Cumulative Harvest

Image courtesy of Reid Miner, NCASI, 2014

CLF Carbon Leadership Forum

Management Matters

Growth, Mortality, and Harvest on National Forest Timberlands 1952-2016. Data provided by Oswalt et al. 2018.

EPD "Nutritional" Label WOOD PRODUCT

AMOUNT PER UNIT				
LCA IMPACT ASSESSMENT		TOTAL	Forestry Operations	WOOD PRODUCT PRODUCTION
Global Warming Potential	kg CO ₂ eq.	143	11	132
Acidification Potential	SO ₂ eq.	1.60	0.15	1.45
Eutrophication	kg N eq.	0.06	0.01	0.05
Smog	kg O3 eq.	25	5	20
Total Energy	MJ	7,425	165	7,260
Non-Renewable Resources	kg	6	0.01	6
Renewable Resources	kg	640	0.00	640
Water Use	L	1,061	11	1,050

Ingredients: Carbon

Puettmann et al 2018

Forest Management Cycle

Carbon Footprint per m³

	Reference Unit	Herbicide Treatment only	Herbicide plus Pile and Burn Treatment	*Broadcast Burn Treatment			
Standard TRACI methodology for the treatment of biogenic carbon							
Production Emissions	kg CO ₂ eq/m ³	10.74	18.14	23.16			
co2 sequestered per m3 log	kg CO ₂ eq/m ³	960.37	960.37	960.37			
Net sequestration	kg CO ₂ eq/m ³	-949.63	-942.23	-937.21			
Modified TRACI methodology that includes biogenic carbon emissions							
Production Emissions	kg CO ₂ eq/m ³	10.74	141.31	315.83			
co2 sequestered per m3 log plus residues	kg CO ₂ eq/m ³	1615	1615	1615			
Net sequestration	kg CO ₂ eq/m ³	-1604.25	-1473.69	-1299.17			

Oneil and Puettmann, 2017, A Life-Cycle Assessment of Forest Resources of the Pacific Northwest, USA, Forest Prod. J. 67(5/6):316–330

Thank You

For More Information

www.corrim.org

Elaine Oneil, PhD

Director of Science and Sustainability

elaine@corrim.org

